翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

beta angle : ウィキペディア英語版
beta angle

The beta angle (\boldsymbol) is a measurement that is used most notably in spaceflight. The beta angle determines the percentage of time an object such as a spacecraft in low Earth orbit (LEO) spends in direct sunlight, absorbing solar energy. Beta angle is defined as the angle between the orbit plane and the vector from the sun (which direction the Sun is shining from). The beta angle is the smaller angle (there are two angles) between the Sun vector (where the Sun is shining from in the sky) and the plane of the object's orbit. Note that the beta angle does not define a unique orbit plane; all satellites in orbit with a given beta angle at a given altitude have the same exposure to the Sun, even though they may be orbiting in completely different planes around the Earth.〔 The beta angle varies between +90° and −90°, and the direction the satellite revolves around the body it orbits determines whether the beta angle sign is positive or negative. An imaginary observer standing on the Sun defines a beta angle as positive if the satellite in question orbits in a counter clockwise direction and negative if it revolves clockwise.〔(【引用サイトリンク】title= Orbit Definition )〕 The maximum amount of time that a satellite in a normal low Earth orbit mission can spend in the Earth's shadow occurs at a beta angle of zero. In such an orbit, the satellite is in sunlight no more than 59% of the time.〔〔
==Light and shadow==
The degree of orbital shadowing an object in LEO experiences is determined by that object's beta angle. An object launched into an initial orbit with an inclination equivalent to the complement to the Earth's inclination to the ecliptic results in an initial beta angle of 0 degrees (\beta = 0°) for the orbiting object. This allows the object to spend the maximum possible amount of its orbital period in the Earth's shadow, and results in extremely reduced absorption of solar energy. At a LEO of 280 kilometers the object in orbit is in sunlight through 59% of its orbit (approximately 53 minutes in Sunlight, and 37 minutes in shadow.〔) On the other extreme, an object launched into an orbit that follows the terminator results in a beta angle of 90 degrees (\beta = 90°), and the object is in sunlight 100% of the time.〔 An example would be a polar orbit initiated at local dawn or dusk on an equinox. These orbits can be taken advantage of to keep a satellite as cool as possible for instruments that require low temperatures, such as infrared cameras, by keeping the beta angle as close to zero as possible, or conversely to keep a satellite in sunlight as much as possible for conversion of sunlight by its solar panels, for solar stability of sensors, or to study the Sun by maintaining a beta angle as close to +90 or -90 as possible.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「beta angle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.